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1. Introduction.

Let X, Y be Banach spaces and A C R" a bounded interval. Let F: A x X — Y be a smooth

operator. The nonlinear equation

(1.1) F()\u) =0,

with parameters A € A is called parametrized nonlinear equations.

Let (A,u) € A x X be a solution of (1.1). Intﬁitively, the set of the solutions of (1.1) would
form n-dimensional hypercurves in the Banach space R® x X. If D,F(A,u) € L(X,Y), the
Fréchet derivative of F with respect to u, is an isomorphism, then, by the implicit function
theorem, the above intuition is correct, i.e. there exists a locally unique branch of solutions
around (A, u), and the branch is parametrized by A. Such branches on which D, F(A\, u) is
isomorphism at each (), u) are called regular branches.

However, if D,F(A,u) is not an isomorphism, the state of equilibrium defined by (1.1)
becomes unstable and the behavior of the solutions is unpredictable; the hypercurve of the

_solutions might be a fold, or there might be several hypercurves of solutions intersecting at that
point. The folding points are called turning points. The points at which the hypercurves of
solutions are intersecting are called bifurcation points. (Note that the definition of bifurcation
points given by some authors includes turning points.)

In this paper we deal with the parametrized nonlinear equation F : A x H3(J) — H~(J)

with one parameter A € A defined by

(1.2) F(hu)=0, () u)€Ax HAJ),

(1.3) < F(Mu),v>:= /J[a(/\,z,u'(z))v’ + f(0 z,u(z))]dz, Vv € Hg(J),

where J := (b,¢) C R is a bounded interval, and a, f : A x J x R — R are sufficiently smooth
functions. Since F is a second order differential operator in divergence form, finite element
solutions of (1.2) are defined in a natural way.

Brezzi, Rappaz, and Raviart [BBR1-3] presented a comprehensive work on the numerical
analysis of parametrized nonlinear equations. They first proved an extended implicit function
theorem with error estimates on Banach spaces. Then, using the implicit function theorem.
they obtained several results of a priori error estimates of finite element solutions [BRR1,2]. In
[BRR3), they considered approximation of solution branches around bifurcation points, which

will not be dealt with in this paper.




Following [BRR1-3], Fink and Rheinboldt released several papers about numerical analysis
of parametrized nonlinear equations ([FR1,2], [R], and references therein). While the formﬁlation
of [BRR1-3] was rather restrictive, Fink and Rheinboldt developed their theory of a priori error
estimates of numerical solutions in a very general setting using the theory of differential geometry.

Fink and Rheinboldt employed the theory of Fredholm operators. Let X and Y be
Banach spaces and F : X — Y a differentiable mapping. Then, F is called Fredholm on an
open set U C X if the Fréchet derivative D F(z) satisfies the following conditions at any z € U:

(1) dimKerDF is finite,
(2) ImDF is closed,
(3) dimCokerDF is finite.

We maust note that, in the above prior works by Brezzi, et al. and Fink-Rheinboldt, only
mildly nonlinear equations were considered. If a(A,z,y) in (1.3) is nonlinear with respect to
y, the operator F is called strongly nonlinear (quasilinear), otherwise it is called mildly
nonlinear (semilinear).

Following the above prior works, we here develop a thorough theory of a priori and a
posteriori error estimates of finite element solutions of (1.2) on regular branches and on branches
around turning points in the case that the number of parameters is one, that is, A C R. Since
our formulation of parametrized nonlinear equations includes strongly nonliear equations, our
theory is an essential extension of the prior works.

In this paper we present the theory of a priori error estimates. In [TB1] the theory of a
posteriori error estimates and several numerical examples will be given. In the following the
outline of this paper is described.

First, we show that the exact and finite element solutions of (1.2) form one-dimensional
smooth manifolds. If F is mildly nonlinear, showing that solutions form manifolds would not
be very difficult. If F is strongly nonlinear, however, it would become very difficult. or F would
not be even differentiable in A x HJ(J).

Therefore, we redefine (1.2) and (1.3) using the Sobolev space W!>(J). Then, F becomes
as smooth as the functions a and f, and it is a Fredholm operator in a certain open set. From the
Fink-Rheinboldt theory, we conclude that the exact and finite element solutions form smooth
manifolds under suitable conditions.

Next, we prove several a priori estimates of finite element solution manifolds of (1.2) using the




extended implicit function theorem due to Brezzi, Rappaz, and Raviart [BRR1]. As mentioned
before, we need to take the Sobolev space W!*(J) as the stage of the error analysis of finite
element solution manifolds. However, using W (J) in the formulation make the finite element
analysis difficult. So we have to come up with several new tricks to overcome this difficulty. The
following is the most essential trick:

Since our operator F is defined on W1°(J), its Fréchet derivative D, F is a linear operator
on W1>(J). However, D, F can be extended to an element of L(H], H~!) and thus the usual
theory of finite element can be applied to D, F. '

Another new idea is ‘rotation’ or ‘pivoting’ of the coordinate to handle turning points. In
[BRR2)], a slightly different formulation from that of [BRR1] was used to deal with turning
points. In Fink-Rheinboldt’s theory, certain isomorphisms were introduced in the formulation
so that both regular branches and branches around turning points were treated simultaneously.
In this paper, we put an auxiliary equation in the original equation (1.2) so that the enlarged
operator is an isomorphism between Banach spaces around turning points or on "steep slope’.
Then we do the same thing what we do on regular branches to the extended operator.

In this paper one-dimenéiona.l case is discussed. Under certain assumptions the results
obtained here will be extended to two-dimensional case in [TB2].

This paper is a revision of a part of one of the authors’ Ph.D. dissertation [T].

2. Preliminary.

In this section we prepare notation and a necessary lemma.
Let J := (b,c) C R be a bounded interval. For a positive integer m and a real p € [1, ).

we denote by W™P(J) the usual LP-Sobolev space of order m, that is,
wmr(J):={ue L’(J)lD"u €I?(J),0<k<m}.
We define the norm of W™?(J) by

lullwms =3 | D*ullLs.
k=0
For p € [1,00], we define the closed subspace W, ?(J) by
WoP(J) = {u € W'P(J)|u=0on al}.

As usual, we denote W™?2(J) and Wom(.]) by H™(J) and HJ(J), respectively.




Note that C§°(J), the set of infinitely many times differentiable functions with compa.;:t
supports, is dense in WOI‘P(J) for p, 1 < p < 00, but if p = 0o, C§°(J) is not dense in Wol'°°(J).

By the Poincaré inequality, the norm

(2.1) lsllwa» = llu'llce

is equivalent to the norm || - |lw1.» in Wol"(J). We always take the norm (2.1) for Wol"(J) in
this paper.
For 1 < ¢ < 0o and p with § + 1 =1, let W=12(J) be the dual space of W'%(J) with the

norm

|Fllw-1s:= sup |,< F,z>q|, Fe W 1?(J),

-“"w:.c=1

where ,< -, - >, is the duality paring between W~17(J) and Wol’q(J). Then we have

Lemma 2.1. For any F € W=1?(J) with 1 < p < oo, there exists a unique u € WOI"(J)
so that '
< Fud>g= / u'v'dz, WweWyiJ). O
J

Lemma 2.1 is a direct consequence of {B, Proposition VIII.13].

In notation of this paper, we omit ‘(J)’ from the notation of Sobolev spaces when there is
no danger of confusion. Also, we write < -,- > instead of ,< -,- >4 when the setting of the
duality paring is obvious.

Subscripts like a, and f) stand for partial derivatives with respect to z and A, respectively.
3. Formulation of the Problem.

In this section we formulate our problem rigorously. To do this we define the nonlinear operator

F:AxWy® —W-1® by for A€ ACRand u € Wy,
(31) < F(\u),v>= /, [a(}, 7, W(2))'(2) + F(N z, u(z))e(2)]dz, Vv € WL,

where < -,- > is the duality pairing between W~1= and W,
For F being well-defined and smooth we require several conditions for a and f.
A function ¥ : A xJ xR — R is called Cai'athéodory continuous if ¥ satisfies the

following conditions: for (A, z,y) € A x J xR,




¥(A\, £,y) is continuous with respect to A and y for almost all z,
Y(A,z,y) is Lebesgue measurable with respect to z for all A and y.

I ¥(A, z,y) is Carathéodory continuous, ¥(\,z,u(z)) is Lebesgue measurable with respect
to z for any Lebesgue measurable function u.

Let o = (a3, a2) be usual multiple index with respéct to A and y. That is, for a = (o1, a2),

. lal
D?a(A, z,y) means Exgwﬂa(A,z,y).
Let d > 1 be an integer. For «, |o| < d, we define the maps A%*(), u) and F*(),u) for

(A u) € A x W™ by

(3.2) A%(\,u)(z) := D%a()z,¥'(2)),

(3.3) Fe*(\u)(z) = Def() z,u(z)).
We then assume that

Assumption 3.1. For all o, |a| < d, we suppose that

(1) For almost all z € J, D*a(), z,y) and D f(\, z,y) exist at all (\,y) € A x R, and they are
Carathéodory continuous. .

(2) The mapping A® defined by (3.2) is a continuous operator from A x Wol"’° to L>, and the
image A%(U) C L™ of any bounded subset U C A x W01’°° is bounded.

(3) The mapping F® defined by (3.3) is a continuous operator. from A x W01'°° to L!. and the
image F*(U) C L! of any bounded subset U C A x Wy'™ is bounded. O

Assumption 3.1 is satisfied if a, f : A x J x R — R are, for instance, C? functions. By simple

computation we obtain the following Lemma.

Lemma 3.2. Suppose that a and f satisfy Assumption 3.1. Then F defined by (3.1) is a

C? mapping. Its Fréchet derivatives are written as

< DyF(M\u)y,v> = /J[a,(;\,z,u'(z)):ﬁ'v'+ fo(A, z, u(z))yv]dz,

n/}[ax(,\,z,u'(z;))v'+f;(A,x,u(z))v]dz,

]

< DyF(\ u)n,v>
fory € Wol"”, v € Wol'l, and n € R. Moreover, we have the following estimates

IlD.F(/\, u)”C(W;’“.W“'-”) < "ay(A’zyu'(z))“L“’ + "fy(szvu(x))“L'v

IDAF(\ ulllw-1.0 < llaa(A, 2,0 (2))llLee + 12(A 2, u(z)lr. O




Now, we define our problem.

Problem 3.3. Under Assumption 3.1 with d > 1, solve the following equation: Find A € A
and u € Wy'™ such that
< F(M\u),v>=0, Vve Wol’l,

where F is defined by (3.1). O

4. Fredholm Operator and the Solution Manifold.

In this section we prove that, if a(}, z,y) satisfies certain conditions, F' will be a nonlinear
Fredholm operator and solutions of Problem 3.3 form a one-dimensional differential manifold.

The following lemmas are essential.

Let p € (1,00] and @ € L*®. Define A : Wol"’ — W=1lP by
(4.1) < Au,v >:= /Ja(z)u'(z)v'(z)dz, Yv € Wol"',
where %+ % =1, and < -, > is the duality pairing between W =17 and Wol'q. Then we have
dz

Lemma 4.1. Suppose a~! € L*® and/
PP J az)
Wy? and W-1».

# 0. Then A is an isomorphism between

'—lp By

Proof. First, we prove that A is omto. Let ¢y := (z)

Lemma 2.1 we know that there exists a unique 9 € W”’ such that
< Fu>= / V(z)'(z)dz, Vv € W,
J
! z 7
Let o o -1 [ ¥() Y+

—d d
co Js a(z) z and u(z) = /b a(t)
< Au,v>=< Fu>forallve WJ"'. Hence, A is onto.

dt. Then it follows that u € Wol"’, and

Next, we show that A is one-to-one. Suppose that u;,us € Wol" and
/Ja(:c)u',(z)v'(z)dz =/a(z)u'2(x)v'(z)dz, Yy € Wi,
J

By (B,LemmaVIIL.1.], there is a constant c; such that a(z)(u}(z) - u)(z)) = c; for almost all

z € J. Since
' , dz
0= [ @) - ez = ez [ 25 = coca
J 7 a(z)




and ¢o # 0, we conclude that u{(z) = u4(z) and u; = u;. That is, A is one-to-one.
Since A is continuous and bijective, A~} is also bounded by the closed graph theorem.

Therefore, A is an isomorphism between Wol"’ and W-l? O

Lemma 4.2. Suppose that a~! € [

dz
= 0. Then
(z)
(1) dim KerA =1 and KerA = {p € Wol’plgo'(:r) = coa(z)™!, co € R},
(2) ImA ¢ W™ js closed,
(3) dim Coker4 = 1.

Proof. (1) Let o(z) := /: (zt)

< Ap,u>=0forallv e W1 "9, Therefore, ¢ € KerA.

Then, by the assumption, we have ¢ € W1 o Wolp, and

Conversely, for any u € KerA, there is a constant ¢g such that a(z)u'(z) = ¢o for almost all
z € J. This implies that u = cop. Hence, (1) is proved.
(2) First, we define the subset X C Wol" by

'
[ 5ae=o}
Clearly, X is a closed subspace of Wg" . A
LetT € C(Wol", W=1P) be the isomorphism defined by < Tu,v >:= / uw'v'dz, Vv € Wol"’.
Let X := T(X). Take any ¥ € X, and define u(z) := / W((t))
< Au,v >=<Ty,v>,forall v € Wol"'. Hence, we have that Im4 > X.

X ={1/1€ Wc}‘p

——_dt. Then, we have u € W,?, and

T
Now, take any n € Wol" and define ¥ by ¥(z) := / (a(t)n'(t) = c1)dt, where ¢; :=
b

/ an'dz/|J|. We check that v € Wol"’ and Ty = An. Moreover, we have v € X because
J

/ Z,((;))“’ I ACELY ?)

Hence, we conclude that ImA = X and ImA is closed.
X
(3) As before, define yo € Wo'® by wo(z) = /,, a(t)~'dt. Since / (¥o/a)dz = / a~Ydz #
J J

0, we have Yo ¢ X. Let ¢c; := /a"dz > 0. Take any ¥ € Wol" and let c3 1= /(w’/a)dz.
J J

Then % — (c3/c2)¥o € X because

/'/"(2)—(63/02)%(3) L= [ Y@, 63/‘ dz

a(z) J 0’(-‘5) c2JJ 01(35)2
This implies that for any ¢ € Wol"’ there exist ¢4 € R and y¥; € X such that ¥ = cqvo + v

The uniqueness of such decomposition is obtained by a simple computation.
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Therefore, we showed that W=1? = ImA @ span{T¥p}, and (3) is proved. O

From Lemma 4.1 and Lemma 4.2 and the definition of Fredholm operators, we finally obtain

Theorem 4.3. If o™ € L™, then the linear operator A defined by (4.1) is a Fredholm

operator and ind A, the index of A, is 0. O

Let us now return to our main problem. We define the subset S C A x Wol ' by
(4.2) S:={()\u) € A x Wy™| ay(), z,u'(2))"! € L™}.

Since the mapping A x Wol"” 3 (A, u) = ay(A, z,u'(z)) € L™ is continuous, we have

Lemma 4.4. If a and f satisfy Assumption 3.1 withd > 1, S is an open set in A x Wol"”.

Now, from the standard theory of Fredholm operators, we obtain the following theorem:

Theorem 4.5. Suppose that a and f satisfy Assumption 3.1 with d > 1. Then in S, the

operator F : S — W1 defined by (3.1) is a nonlinear Fredholm operator of index 1.

Proof. From Lemma 3.2 and Theorem 4.3, the operator D, F(),u) : Wy™ — W =1 is Fred-
holm and its index is 0 for (), u) € S. Since DF(A,u) : R x Wy'® — W~1> is written as
DF(A, u)(n,¥) = D F(Au)yY + nDyF(X,u) for n € R and ¢ € Wol"", Theorem 4.5 is con-
cluded. O

We define the subset R(F,S) C S by
(4.3) R(F,S) := {(A,u) € S|DF(}, u) is onto}.
and have
Lemma 4.6. For any (), u) € R(F,S), dim KerD, F(), u) is at most 1.

Proof. Assume that N := dim KerD, F(),u) > 2 for some (,\,t_z) € R(F,S). Note that the

elements of KerDF(), u) are solutions of the linearized equation

(44) DF('\v“)(l‘»w)=#DAF(A'“)+DuF(/\vU)¢=0, #e Rv 11)5 WOI,OO

9




H DyF(\ u) ¢ ImD,F(), u), by (4.4), we obtain
KetDF(\, u) = {(0,4) € A x Wy'®| ¢ € KerD,F(), u)}

and dim KerDF(A,u) = N > 1. This contradicts to (4.3) and ind F=1.
Therefore, we should conclude that D, F(), u) € IinD.,F(A,u). Let ¢ € W01'°° be such that
Dy(X,u) = Dy F(A,u)yo. Then we obtain

(4.5) KerDF(\,u) = {(u, ~u¥o+ ) €A x W™ | s € R, ¢ € KerD F()\,u) },

and hence dim KetDF(M\u) = N +1 > 1. .Therefore, we get a contradiction again, and
Lemma 4.6 is proved. O

The elements of R(F, S) are called regular points. The elements of F(R(F,S)) are called
regular values.

By Theorem 4.5, we can apply the Fink-Rheinboldt theory ([FR1],[FR2],[R]) to the operator

F and obtain the main theorem of this section.

Theorem 4.7. Suppose that a and f satisfy Assumption 3.1 withd > 1. Let
e € F(R(F,S)). Then

M=M= {(\u) € R(F,S)| F(),u) = e}

is a one-dimensional C?%-manifold without boundary. Moreover, for each (A u) € M, the tangent
space Ty , M at (A, u) is KetDF(A,u).
Therefore, if 0 € F(R(F,S)), the solutions of Problem 3.3 form a one-dimensional C4-

manifold without boundary in R(F,S). O

In the sequel of this paper we always assume that 0 € F(R(F,S)).

Now, let us consider the linearized equation (4.4). From Lemma 4.6, we would have four
cases for (A, u) € R(F,S).

Case 1. KerD,F(A,u) = {0} and Dy F(\,u) € ImD, F(), u).

In this case, by the implicit function theorem, there exists a unique C?¢ mapA 3\ — u(\) €
W01'°° such that F(),u(})) = 0 for any A. Hence, this case corresponds to regular branches.

a

Case 2. dim KerD, F(\,u) = 1 and DyF(A,u) ¢ ImD, F(), u).

10




In Case 2, using the well-known Liapunov-Schmidt reduction (see, for instance, [GS]),
we can show that this case corresponds to (general) turning points. O

Case 3. KetD,F(A,u) = {0} and Dy F()\, u) ¢ ImD, F(A,u).

By a similar argument to the proof of Lemma 4.6, we see that this case cannot happen. O

Case 4. dim KerD,F(A,u) =1 and Dy F(),u) € ImD, F(A,u).

By (4.5), we have dimKerDF(),u) = 2 and dimCoker DF(A, u) = 1. Hence, this is not the
case for (A, u) € R(F,S). In this case we may have a bifurcation phenomenon. O

By the above consideration we now know that

(\u)e R(F,S) &5 () u) €S and DF(), u) € L(R x WF™ W=1) is onto,

= we have either Case 1 or Case 2.

5. Regularity of Solutions.

In this section we examine the regularity of the solutions (A, u) € Mq. To do it we need

additional assumptions. Let p*, 2 < p* < 0o be taken and fixed.

Assumption 5.1. Under Assumption 3.1 with d > 1, we assume that

(1) For all X € A, the functions a(},-,-), ay(A,-,-): J x R — R are continuous.

(2) For all (A, y) € A x R, there exist a;(\,z,y) for almost all z € J and are Carathéodory
continuous. | |

(3) The composition functions f(), z,u(z)), az(A, z,4'(z)) are in LP" for any (), u) € A x Wg"".

Moreover, for any bounded subsets K C A x W01'°°,
{f(\,z,u(z)) € L?°| (\,u) € K}, {az() z,u'(z)) € LP"| ()\,u) € K}
are bounded in LP". O
Lemma 5.2. Let (\,u) € My. Suppose that Assumption 3.1 and 5.1 hold. Then u €
cl(J).

Proof. Define fo by fo(z) := - f(), z,u(z)). By Assumption 5.1(3), we have fo € LP". Now.

consider the following equation
(5.1) /J‘D'(:c)v'(z)dz :/fo(r)v(z)dz:, Vv e H..
J

11




There exists a unique solution ® € W%?" of (5.1). Thus, we have
(5.2) a(\ z,4'(z)) = H(z) € W,

where H(z) := ®'(z) + ¢; with some constant c;.

Now, for a fixed )\ € A, define the function G:J x R — R by G(z,y) :=a(), z,y) - H(z).
Note that Gy(z,y) = a,(A,z,y) and, by Assumption 5.1(1), G and G, are continuous. Also
we remark that, for almost all zo € J and yp := u'(zo), we have G(zg,¥0) = a(}, 2o, u'(z0)) —
H(zo) =0 and a,(}, zo,y0) = ay(, zo,d’(zo)) # 0 because (A, u) € M C S and (4.2).

Therefore, by the implicit function theorem, we conclude that, in the each neighborhood of

To, there exists a unique continuous function T such that T(z¢) = u'(z¢) and
G(Z,T(I)) = a(/\9 z, T(I)) - H(I) =0.

This means that T(z) = u'(z). Hehce, u'(z) is continuous for all z € J. O

The following is the main theorem of this section.

Theorem 5.3. Under Assumption 3.1 and 5.1, we have u € W27 for all (M u) € M.
Moreover, for all bounded closed subsets M C My, there exists a constant K( X;t) such that

sup_ |[ullwzs < K(M).
(A, u)eEM

Proof. Let H € W1?" be defined by (5.2). For small § > 0 we write

H(z +6)- H(z)
]

u'(z +6)—u'(z)
6

= ay(X,z+6,4(z+6)+ (v (z + 6) — v'(2)))

a(A, z +6,u'(z)) — a(A, z, ¥/ (z))
* 5

with 0 < ¢ < 1. Since H € WP° H' exists at almost all £ € J and H' € LP". From

(X, u) € My C S, it follows that a(X, z + 6, u'(z + 6))~! € L*, that is,
la(A,z+6,u'(z+6))]>v>0 foranyz+6€J.

By Lemma 5.2, we have u/(z + §) — u/(z) as § — 0. Hence we obtain

(5.3) lay(A, z + 6,4'(z + &) + e(u'(z + 6) = w'(2)))| > 0

for all z € J and sufficiently small § > 0, and

(5.4) }i.x.r:) ay(A,z +6,u'(z + 6) + e(u'(z + 8) — u'(2))) = ay(}, z,4'(z))
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because of Assumption 5.1(1). By (5.3), (5.4) and Assumption 5.1(2), we conclude that , for

almost all z € J, }in})(u'(z +§8) — u'(z))/6 exists and

iy _ e W(E+6)—d(z) _ H'(z)—az() z,v(z))
(5.5) uwlz) = }1_1}(1) ] - ay(A, z,u'(z))

Since H',a;(),z,4'(z)) € LP°, we obtain u” € LP" and u € W2?",
Now, let Mc My be a bounded closed subset. Then, we have

(5.6) sup{llag (A, z,w(2))"Y|z; (A, u) € M} < oo.

The last part of Lemma 5.3 is obtained by (5.5}, (5.6), and Assumption 5.1(3). O

6. Finite Element Solution Manifold.

Recall that we are considering
Problem 6.1. Find ) € A and u € W)™ such that
(6.1) < F(\u),v>=0, YweWyl. O

Naturally, we define the finite element solution of (6.1) in the following way. Let S, C
W°1'°° - Wol'1 be a finite element space. The space of piecewise linear functions is an example

of 3';.. We define the finite element solutions of Problem 6.1 by

Problem 8.1rg. Find A\, € A and uy, € Sy, such that
< FOn,up)yvn >=0, Vo, € Sp. O

Then, using the Fink and Rheinboldt theory, we will show that the solutions of Prob-
lem 6.15f also form a differential manifold.

Let (-,-) be the inner product of Hj defined by (u,v) := /Ju’v’dz for u,v € H}. Since
.§,. C H§, we define the canonical projection Il : H} — g';. by (¥ = Ihy,vp) = 0, Yy, € .%;, for
¥ € H}.

We see the following equivalences. Define an isomorphism T € C(W‘1'°°,Wol'°°) by <
n,v >= (Tn,v), Yo € W) for n € W=1_ Then, we observe that, for any v, € :9;, and v € H},
(6.2) < F(An,un),vn >=0 <= < F(Ap,up), My >=0

&= (TF(M,un),Iav) =0
<> (IIWTF(Ap,un),v)=0

= < T'IH,.TF(/\;.,u;,),v >=0.
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Since H{ is dense in Wé'l, we conclude that Problem 6.17fg is equivalent to

Problem 6.1}5- Find A\, € A and uy, € Sy, such that
< Fu(An,un),v >=0, Yve Wy,

where P, := T7I,T € L(W =1, W=1®) and Fy(Mn,us) := PaF(A4,up). O

Our formulation of Problem 6.1% g seems to depend on T and II,. However, we claim that,
even if we take other Ty, II7 and define the finite el;ement solutions by < Ty M2To F(Ag, un)v >
=0forallve Wol'l, this formulation is equivalent to Problem 6.1% .

Let a € L™ be such that a(z) > € > 0 for all z € J, where ¢ is a constant. Let (-, ), be
the inner product of H} defined by (u,v), := / au'v'dz for u,v € H}. Define the isomorphism
T, € £(W‘1-°°,Wol'°°) by < n,v >= (T,n, u):, Vv € Wol’1 for n € W=1. Also, define the
canonical projection II : Hj — 3’;. by (¢ ~I§%,vn)a =0, Yup € .;';. for ¥ € H}. By the same

manner as in (6.2), we observe that, for any v, € .g',, and any v € H{,

< F(Op,up),vp >= 0 =< TTHIS T F(An, vp), v >= 0.
Therefore, with the definition P := T lIIgTa, we conclude that
(6.3) PyF(Mp,up) =0 <= PP F(My,up) =0.

Hence, our claim is demonstrated.

We will see that these observation is very important fc: our a priori error estimates because
(6.3) guarantees that we can take any a € L™ (that is, (T,, II§)) such that o > ¢ > 0 in our
error analysis.

In the statement of Problem 6.1%5, we defined Fj, : A x 3',, — W-1=_ Following the

Fink-Rheinboldt theory we extend Fj to A x Wy'™. Define Fj, : A x W™ — W-1 by
7o -1
Fy(\u):=(T -~ PNT; 'u+ PPF(\ ),

where I is the identity of W =1,

Lemma 6.2 ([R,Lemma 5.1]). The operator F}, satisfies the lollowing:
(1) F2(2, u) = 0 for some (), u) € A x H} if and only if (A, u) € A x Sh and Fa(), ) = 0.
(2) T, is a Fredholm operator of index 1 on A x H}. O
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By Lemma 6.2, we have the following theorem as a consequence of the Fink-Rheinbold't

theory.

Theorem 6.3. Suppose that F is C? mapping (d > 1). Then the set of the finite elements

solutions of Problem 6.1% g,
My = {(Mn, un) € R(F, A X HY)|Fa(hn,up) = 0},

is a C*% manifold without boundary. O

7. A Priori Error Estimates of the FE Solution Manifold.

Part 1: Regular Branches.

We are ready to start to consider a priori error estimates of the FE solution manifold M. In

the consideration of error estimates, we always assume the following.

Assumption 7.1. We assume that
(1) Assumption 3.1 with d (i.e. F is a C% Fredholm map).
(2) 0 € F(R(F,S)) (i.e. Mo #90).
(3) Assumption 5.1 (i.e. u € W??", 2 < p* < 0o for any (), u) € My).

(4) Sy, is regular and Pm inf |lu—vallzy =0, foranyue 1}
-0 vA€SH
(5) The triangulation of S, (in one dimensional case, the partition of J into small intervals)

satisfies the inverse assumption [C,p140]. O

-~ L)
In the sequel, we denote by II, : Wol'1 — S;, the interpolant projection. We also denote by

C or C,, i is non-negative integers, generic constants which are independent of 2~ > 0.
The main tool of our a priori error estimates is the following implicit function theorem due

to Brezzi, Rappaz, and Raviart (BRR1,Theorem 1].

Theorem 7.2. Let X, Y and Z be Banach spaces. Let SC X and y: S — Y a function
defined in S. Let f be a C! mapping defined in a neighborhood of S x y(S). Suppose that the
function S 3 z — y(z) € Y satisfies the uniform Lipschitz condition; there exists a constant C,
such that

lly(z) = y(z*)ly < Collz - z°|lx, Vz,z"€S.
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Suppose in addition that the following hypotheses hold:
(i) for all zo € S, D, f(zo,y(Z0)) is an isomorphism of Y onto Z with

sup ||(Dy f(z0, ¥(20))) llcczy) € Cr,
Z0€S

(ii) we have
::leg_”Dxf(zo,y(zo))"z:(x,Z) L0y,
and there exists a monotonically increasing function L : R* — R* such that for all zo € S and
all (z,y) € Be((z0,y(20)))
IDf(z,y) = Df(zo, ¥(zo)llc(xxy.z) £ L1(€)(llz = zollx + lly — y(zo)lly)-

Then, one can find three constants a,b,d > 0 depending only on Cy,Cy,C; and L, such that,
under the condition

sup || f(zo, y(z0))llz < d,
Z9€S

There exists a unique C' function g : U Ba(z¢) — Y which satisfies
10€S

f(z,9(z)) =0,
and maps B,(zo) into By(y(zo)) for zo € S. Moreover, we have for all 2o € S and all z € B,(z0)
ll9(z) = y(zo)lly < Ko(llz = zollx + £ (20, y(z0))l|2),

where the constant Ko > 0 depends only on C,C;. O

Our first main theorem is as follows.

Theorem 7.3. Suppose that Assumption 7.1 holds for d > 2. Also suppose that, at
(X, ug) € Mo, Dy F(Ag,ug) € £(W01’°°, W=1) is an isomorphism.
Then, for sufficiently small h > 0, there are a positive €5, > 0, a constant b(\g) > 0, and a
anique C? map [Ao — €2y, Ao+ €3,] 3 A — tin(A) € S such that
(7.1) Fi(A,4n(2)) =0,
(12) Haa(A) = Tau(M)ll gy < B(AIATH,
for any n with0 < n < %
Moreover, we have for some constant K()o) > 0
(7.3) HEa(2) = «(Mllgy < KPollu(A) = Mau(A)| g3

Here, the constants b(Ao) and K()Ag) are independent of h and X € [Ag — €1, Ao + €3]
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Proof. Since the proof is somewhat long, we divide it into several steps.
Step 1. It follows from Lemma 3.2 that, for (A\,u) € Mo, DF()\,u) € L(R x H}, H™!)

and
{ Ax Wy 3 ()\u)w DF(\,u) € C(Rx H}, H™Y) is

(7.4) Lipschitz continuous on bounded subset.
We, moreover, claim that, if D, F(), u) € C(I‘Y’ol'“’, W=1) is an isomorphism for (), u) € S,
Dy F(),u) is an isomorphism of Hj to H~! as well.

Define Q,R € L(H},H™1) by
2< QY,v >ai= /Ja(z‘)wﬁ'v'dz, 2< Ry, v >a:= /Jﬁ(z)dwdz, vy, v € Hy,

where a(z) := ay(A, z,4'(z)) and B(z) := fy(A, z, u(z)).

By Theorem 4.3, Q is a Fredholm operator of index 0 and R is compact. Hence, D, F(),u) =
Q+ Re L(H},H™!) is a Fredholm operator of index 0. Therefore, if KerD, F()\.u) C H} is
trivial, D, F(),u) € C(H}, H™!) is an isomorphism.

Let ¥ € H} be such t.ha.t D,F(Mu)y = 0. This means that —(a(z)¥') + 3(z)v = 0
in the distributional sense. Since B € L', we conclude y € W3! by a standard regular-
ity argument. Hence, ¥ € Wol"” and 0 = D F() u)y € W1, Since we assumed that
DyF(),u) € L(Wy™,W~1) is an isomorphism, we obtain ¥ = 0. Therefore, our claim is
proved. o

Step 2. We prepare inequalities which we will use later. By Assumption 7.1(5) we have

the inverse inequality [C,Theorem 3.2.6],
-1 -4 b,
(7.5) llvnllyoo < Csh™3lunllgy < C3h~*Mlunllyy, VYun € S,

for any n > 0.
Since D, F()o,u0) € C(Wol'“, W=1.>) is an isomorphism, we conclude by the implicit func-

tion theorem that there exist ¢; > 0 and a unique C? map
(Mo—€,do+€1)d A —u(d) e W™
such that ugp = u('9) and F(\,u(A)) = 0. Thus, it follows that

(7.6) IEau(A7) = Tau(A)llgy < CulA® = A,

for all A, A" € (Ao — €1,)0 + €1). In (7.6) we used the fact that sup||ﬁ;.||c(,,;_”;) < 00 (see e.g.
A>0
(C,Theotem 3.1.6}).




By Theorem 5.3 we know that u()) € W2?" and
(7.7) Cs :=sup {“u(/\)llwz,,-; A€[A - 6—21-,/\0 + 521 } < 00.
Thus, by [C,Theorem 3.1.6], we see
(7.8) Ilu(2) = Fau(Mlyp.0 < CC' .

Let ao(z) := ay(ro,z,uH(z)). Since ay(lo,z,u5(z))™! € L™ ((Xo,u0) € Mo C 8), uo €

W3?" c C'[0,1], and Assumption 5.1(1), we can assume without loss of generality that
(1.9) ay(R0, 2, 4h(2)) > 3o > 0.
Then, we define the bilinear form A : Hj x H} — R by
A(u,v) := / ao(z)u'v'dz, Vu,v € Hj.
J
Also, we define the canonical projection I : H} — .§’;. by
(7.10) A(u - H?,u,v,.) =0, Vy, € :S';.,
for u € H}. Then, it follows from Assumption 7.1(4) and (7.9) that
(7.11) ' ,l.in},ﬂu - nglly‘; =0, Vue€ H].
Now, define Tp : H=! — H} by
2< ,u>2= /, ao(z)(Tod)'v'dz, Vv € HY,
for ® € H™!, and define T‘,’, (A X Wy'™ — W=l by
9 -1
Fa(hu) :=(I - POYTy 'u+ PRF(), ),
where I is the identity map of Wy'™® and P? := Ty Ty € L(W 1, W 1),
Note that, by Lemma 6.2, Tg(/\,u) =0 if and only if (), u) € M,.
By the definition of I and P?, we immediately get
(7.12) Ce := Sup”P'?"E(H-l'H—I) < 00.
A>0
It follows from (7.7), (7.12), and [C,Theorem3.1.6] that
(713)  IFRO, BauDllg- < Call FO, 9(0) = F, Tau(O)lg-»

l -~
Co ([ 16l ccmy -t ) H3) = BVl

Crh, VA€ [do- 2 do+ ],

A

IA
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where ¥, := D, F(), (1 - t)u(A) + tllau())) € L(H}, H™!). Therefore, we obtain
(1.14) Jim sup {A-H+DFRA RauA)l-152 € o = 3,20+ 21} < Jim Crad=" =0,
fora.ny'n,0<n< % °

Step 3. We claim that there exist a positive ¢ > 0 and a constant C3 > 0 independent of

h >0 and X € [Ag - €3, Mg + €3] with
(7.15) IDFR au()onllg-1 2 Collwallyy,  Von € 5.
First, we note that, by (7.4) and Step 1, the mapping
(o — €1, 20 +€) 3 A= (DyF(X,u(N)™" € L(H™", H})
is continuous. Thus, we set
T, PN LN CRE Pt

Next, we write

(7.16) D.FVN Mau(M))un = DyF(), u(A))vy”

+P2(D F(A fiyu(A)) = D F(A, u(N))vy

(c)

—(I = P2Y(=T5! + D F()o, ug))v),

(d)

+(I = B))(DuF(o,u0) = DuF(\, u(A))vy, -
Let us examine the each term of (7.16). On (a), we immediately see
(7.172) 1DV FO, 8O ll-1 2 o™ lonll gy
On (b), it follows from (7.4), (7.8), and (7.12) that
(7.17b) IFR(DLF(A, [au(2)) = DuF(X, u(A))wall -1
< Colllau(d) = u(Mllys.=llvnllgy < CCsCoh'~Fllunlly-
On (c), we remind that
1< (=T34 DuF (o, w0)1v >2= [ fy(30.2, uo(e))wudz,
and =T5 ! + Dy F()o,u0) € C(H}, H™') is compact. Therefore, we conclude that

(7.17¢) Lim [}(7 - PY=T5" + DuF(ho, uo)lceap -1y = 0
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because of (7.11').

On (d) we observe the following. By (7.4) there exists a constant Cyo such that
WD F(A", u(A*)) - DuF(,\,u(/\))llc(H;.H-.) < Crold™ = Al

Take €3 > 0 so that €5' > 2wCigsup || = P||cg-1 g-1)- Then we have
A>0

-1

(7.174) I = POXDWF (%0, 80) = DuFO\ s(M )l gy -1y € S5

for any A€ [/\0 — €2, Ao + 62].

From (7.16) and (7.17), we obtain

-1

IDLFR(, Bau(A)wallg-1 2 (WT' - 5(’1)) llvall gy
with 'l.m:’ 8(h) = 0. Therefore, we prove the claim (7.15) for sufficiently small A. o
Step 4 Again, we prepare a few inequalities. It follows from (7.8) that
(7.18)  IDFR(A Tu()llg-1 < Cs (IDAF(, u(A)llg-1 + C1ak'™#) < Cra, -

for all A € [Ag— %, %0 + 5] and h > 0.
By (7.4) and (7.12) we have
IDFA(", 53) = DA, BhuO)) cmn sy 1)
< Cua(]A" = Al + vy = ﬁhu(/\)”w‘;m), Vv € S,
where Cy3 = Ci3(]A|, [,\‘I,Ilv;”w;.m) is independent of h. Hence, by (7.5), there exists a

monotonically increasing function L; : R* — R™* independent of k such that, for all \,\" €
[Ao = %,Ao + 521-] and all v; € ..9;. with

- .« #@ 1

A=A = A +llv; - Tau(Vllgg) <& 0<n< s,

we have

(7.19) IDFA(A", 55) = DFROA, sl come g -1

< LOR (D = A+ llog - Bau(Wllg ). o

Step 5 This is the final stage of the proof. By (7.6), (7.14), (7.15), (7.18) and (7.19) we

can apply Theorem 7.2 to the operator T(,: in the following situation;
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X =R with norm A™7|A|,

Y = gT,, C HJ with norm R lonllgy

Z = g’,, C H~! with norm A~7|[Ty  up g1,

S = [Ag — €24, A0 + €] With €, := min (%,62),
y(A) = Myu(r),

where v := %+ n for any 7, 0 < 7 < %— Since ||Anllexxv,z) = llAnllgmx sy, g-1) for all

Ay € L(R x :9;., 3‘;.) and (7.14), there exist a constant 5()g) > 0 independent of A and a unique

C? function (Mg = €3, Ao + €24] 3 A — dn(A) € .;';. such that
(7.20) Fr(\@n(2)) =0 and [[fixu(r) = an(M)ly < b(Xo),

and the inequality
(7.21) llaa(3) = Tau(llgy < CrallFa(r, Tau(2))llg-1

holds for all A € [Ag — €1,, A0 + €1,). From Lemma 6.2, we get (7.1) and (7.2) immediately from
(7.20). Combining (7.13) and (7.21), we obtain (7.3) and complete the proof of Theorem 7.3. O

Corollary 7.4. Suppose that the assumptions of Theorem 7.3 hold. Then, there exists a

constaat K1(Xo) > 0 independent of h > 0 and X € [Ag — €5, Ao + €x,] such that
(122) () = (Wllyzo €Kik, 0<n< 3,
for any A € [Ag = €5,, Ag + €1,] and sufficiently small h > 0.
Proof. By (7.2) and the inverse inequality [C,Theorem 3.2.6], we have
aa(A) = Eau(M)llys = < B(A0)A",
for all X € [Ag — €3y, A0 + €2,)- It follows from (7.8) that

83 = @Ml < M180) = Bau(W o + 1) = Tau(X)lly.0

< CCsh'™# +b(Mo)h" < 3K (M)h". O

Theorem 7.5. Suppose that Assumption 7.1 holds for d > 2. Also, suppose that Mg C
My is a compact regular branch, that is, there is a compact interval A C A and C? map

A3 X u()) € Wo™ such that

Mo = {(1,u(1)) € Mq | DyF(),u())) is an isomorphism for VA € A}.
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Then, for sufficiently small h > 0, there exists the corresponding finite element solution

branch My, C M, which is parametrized by the same A € A and

(7:23) ITau(d) - un(Mllgy < Kohd*,
(1.24) lw(d) = ssMllgy £ Kallu(d) = Tau(Mll gy,
(7.25) () = iy < Koh"

for all A € K, u(A) € JTAO, up(A) € A7;., and n with 0 < n < %- Here, Ko, K1, K2 > 0 are
constants independent of h and \.

Moreover, we have

(7.26) M, C R(F,S).

Proof. From Theorem 7.3 and Corollary 7.4, (7.23), (7.24), and (7.25) are obtained imme-
diately.
To show (7.26) we just have to realize that D, F(), u())) € C(Wol‘°°, W=1>2)is an isomor-

phism for each ) € A and
Dy F(X un(2)) = DuF(), u())) + By,

where By, := D, F(A, up())) = Dy F(A,u())) and "Bh”C(Wol.eo'W_l'“) — 0 as h — 0 because of
(7.25). O '

Remark 7.6. We can rewrite (7.23) and (7.25) as
ITau(2) = un(Mllgy < Kok [u(d) = un(M)lly . < K2h3™,

where ¢ > 0 is an any small number. In linear cases, with certain assumptions of regularity of

solutions, we would have error estimates like
Mnu = unllgy < CH?, llu - unllyr. < Ch.

It is not very clear whether or not the convergence rates of (7.23) and (7.25) are optimal.
We might be able to improve the convergence rates with further assumptions for the regularity

of solutions (Assumption 5.1 might not be enough to improve (7.23) and (7.25)). O
For || - ||,1.»+-estimate, we have the following. Suppose that we have
]
. 0 1,p°
(7.27) 'l.x_x‘t},"u - H,,ullw..,,- =0, VueW,?,
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where TI9 € £( Wol“", WOI'P') is defined by (7.10). For example, we can show that (7.27) is true

for piecewise linear elements.

Theorem 7.7. Suppose that assumptions of Theorem 7.5 and (7.27) hold. Then, for suf-
ficiently small h > 0, for the corresponding finite element solution branch ,'«2,, C M,, we have

the following estimates:

Rau(d) - unMllyroe < Koh?*7,
w3 = aWllggaee S Kallu(d) = Baullygre,

(3 = unMllyae < K2h",

[oraU/\EK,u(z\)e.‘\vdo,u;.(/\)GI\VA;.,andnwith0<n<1—1—,1.-.D

8. A Priori Error Estimates of the FE Solution Manifold.

Part 2: Around Turning Points.

Let us consider a priori error estimates around turning points and/or on ‘steep slopes’. Basic
idea is as follows: just rotate the coordinate ‘90-degrees’ and do the exactly same thing as in
Section 7.

Recall that by the argument in Section 4 we know that we have either Case 1 or Case 2 for
(A u) € Mg C R(F,S);

Case 1: KerD,F(),u) = {0} and Dy F(\,u) € ImD, F(),u).

Case 2: dimKerD,F(A,u) =1 and DyF(), u) ¢ ImD,F(), u).

Suppose that ¥y € R and zo € J are given in a certain way and fixed. Define G : R(F.S) —
R x W=1> by

G(X, u) == (u(z0) = 7, F(X, u))

for (A, u) € R(F,S). Then, we have
(8.1) DG(A, u)(s, ¥) = (¥(z0), DA F(A, u) + Dy F(\, u)v),

forpy€eRand y € Wol"”. First, we prepare the following lemma.

Lemma 8.1. Let (M, u) € R(F,S) and (pg, Vo) the basis of Ket DF(X,u). Suppose that
Dy\F(A,u) # 0. Then, we have ||yollco > 0. Moreover, with zo € J such that yo(zo) # O.
DG(), u) is an isomorphism of R x Wg*™ to R x W=1% for any v € R.
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Proof. Suppose that we are in Case 1. It follows from D), F(\,u) # 0 that
P 1= =Dy F(), u) Y (DaF()\,u)) #0.

Thus, the basis of KerDF(),u) should be written as (ug, po¥;). Hence, we obtain ||wollce =
lsolll¥rllce > 0.

Suppose that we are in Case 2. Let ¢4 € W01’°° be such that KerD.,F(/\,u) = span{%g}.
Then, (0, ¥g) is the basis of KerDF(A,u) and the first part of Lemma 8.1 is trivial in this case.

Now, let us consider DG(A, u). Let (u,¥) € KetDG(A, u), and zg € J such that y(zq) # 0.
Then, there exists § € R such that (g,%) = §(La, ¥o). Thus, it follows from (8.1) and wo(zg) # 0
that (4, ¥) = (0,0). Hence, DG(), u) is one-to-one.

Let (2,9) be any element of R x W=1°. Since DF(\,u) is onto, there exists (p.o) €
R x W01'°° such that & = DF (), u)(p, ). Hence, we obtain (z,®) = DG(\, u)((p, &)+ (o, ¥0)),
where § := (z — ¢(z9))/¥o(z0). Therefore, we have showed that DG(),u) is onto and an

isomorphism. O

From Lemma 8.1, we immediately obtain the following corollary.

Corollary 8.2. Let (A\,u) € R(F,S). Suppose that DyF(\,u) # 0. Then, for sufficiently

small h > 0, there exists a nodal point o € J of S), such that DG(\,u) is an isomorphism. O

Remark 8.3. In Lemma 8.2 we showed that we always can choose a nodal point of g';, 0
that DG(),u) is an isomorphism if D)F()A,u) # 0. For example, if a nodal point zy € J is
taken so that ¥o(zo) is nearly equal to ||¢o||co, then DG(), u) is an isomorphism.

Indeed, the manner of PITCON of choosing the continuation index is comsistent to the
above fact. After getting a point (Ay,us) € M), PITCON computes the tangent vector
th = (Yo, .-, Yx) € T(a,,up)Mn of the solution manifold My (remember that KerD Fy(Ay, up) =
T(ap,ua)Mn). Then, the continuation index i. is taken so that |y;.| = |[ta|le. In our case,
(vo, .-+, yx) is like (pon, Yon(z1),--., Yon(zx)), where z1, ..., zx are nodal points of ;h, (ton, won) is
the basis of KerDFy(Ap,upn), and i, = Yoa(z0). (See [R] for the detail.) Thus. for sufficiently
small A > 0, |¥on(zo)| would be very close to ||¥ol|ce, and ¥p(zo) is not zero.

Hence, in practical computation, we may expect that PITCON takes the right nodal point

T, and DG()\,u) € L(R x WJ""’,R x W~1) is an isomorphism. O
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Suppose that Dy F(\,u) # 0 at (A\,u) € My. To ‘rotate’ the coordinate we define the
operator H :R xS — R x W1 by

H(v, A u) = (u(zo) = 7, F(Xu)), v€R, (X u)€S,

where zo € J is taken so that Dy H(v, A u) = DG(), u) € L(R x Wol"”,R x W=1) is an
isomorphism.

Note that
(8.2) DH(v, A, u)(s,t,¥) = (=3 + ¥(20), DF (), u)(2, %))
for (s,t) € R® and v € Wol’°°. Also, note that, by the implicit function theorem, for each
(A, u) € Mo such that DyF(X,u) # 0, there exist ¢¢ > 0 and a unique C? map (u(zg) —
€0, ¥(Z0) + €0) 3 ¥ — (A(7),u(¥)) € Mg such that (), u) = (z\(‘yo),u(vg;)) with v := u(zg), and
H(7,A(7),u(7)) = (0,0), that is, F(A(y),u(7)) = 0 and u(7)(zo) = Yo for any ~.

Suppose that Dy F(Ag,u0) # 0 at (Ao, u0) € Mg. Then by Corollary 8.2 there exists a nodal
point zg € J of g';, such that D, ,)H(v, Ao, u0) = DG(Mo,ug) is an isomorphism of R x W01'°°
to R x W= for sufficiently small & > 0.

Theorem 8.4. Suppose that Assumption 7.1 holds forld > 2. Let DyF(Ag,up) # 0 at
(Ao, uo) € My. We assume without loss of generality that there exists o € J such that zg is a
nodal point of .g';. for all sufficiently small h > 0 and D, )H (7, Ao, uo) is an isomorphism.

Then, there exist a positive ¢g > 0, constants b()g, ug), k(Xo,u0) > 0, and a unique C? map

[40(Z0) — €0, u0(z0) + €0] 3 ¥ — (An(¥), @n(¥)) € A x Sy, such that

(8.3) Fa(Mn(7),84(7)) =0,
(8.4) (1) = A+ (1) = Bau(nllgg < b0, uo)hT*7,
(8.5) () = A+ [lan(r) = w(Mllgz < K (o, uo)llu() ~ Tnu(1)ll g

for any n with 0 < n < % The constants b(Xo,ug) and K()o,ug) are independent of h and

7 € [uo(zo) — €0, uo(z0) + €0]-

Proof. The manner of the proof is exactly same to that of Theorem 7.3. We divide the proof
into several steps.

Step 1. It follows from Lemma 3.2 and (8.2) that DH(v,\,u) € L(R? x H}.Rx H™Y)
and

(8.6) { Rx A x W™ 3 (,),u) = DH(v,A,u) € C(R? x HY,Rx H™1) is

Lipschitz continuous on bounded subset.
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We, moreover, claim that, if Dy F(},u) # 0 and Dyy.uy H(7, A, u) € L(RX W™, Rx W-1.)
is an isomorphism at (7, \,u) € R x R(F,S), D(»4)H(7, A, u) is an isomorphism of R x Hj to
R x H-! as well.

Let H := D5 ,)H(7, )\, u) € L(R x H},R x H™'). Then

H(p,¥) = (¥(zo), DF(M\, u)(p,¥)), neR,ye H}.

We have to consider two cases.

Suppose that we are in Case 1, that is, D, F(),u) € C(Wol"”, W=1%) is an isomorphism. In
this case, from the argument of Step 1 of Theorem 7.3, we know that D, F(,u) € L(H3, H™1)
is an isomorphism. Thus, we can prove our claim by the exactly same manner of the proof of
Lemma 8.1.

Next, suppose that we are in Case 2, that is, dimKerQ = 1 and R ¢ ImQ, where Q :=
D,F(\ u) € C(Wol'°°, W=12)and R := D,F(), u). To avoid confusion we denote D, F(\,u) €
C(H}, H™') by Q. |

We first show that KerQ = KerQ. Obviously, we have Ker@ C KerQ. Let y € KetQ C Hé
Then, we have

2< QY v >o= /J[a(x)z/;'v' + B(z)yv]dz =0, ‘Vv € H},

where a(z) := ay(), z,4'(z)) and B(z) := fy(), z,u(z)). Hence, by a simple computation, we
conclude that y € W2?" n H} ¢ W,'™. Hence, KerQ = KerQ. By Theorem 4.3, we know that
indé = 0. Thus, we obtain dim Coketé =1.

Next, we want to show that DyF(\,u) ¢ ImQ. If DyF(),u) € ImQ, there exists some

Y1 € H} such that
/ a(2)Wiv'dz = 3< DyF(A u),0 > — / B(z)vdz, W€ HL.
J J

Again, by a simple computation, we conclude that i, is in the domain of Q. This is a contra-
diction becaunse we assumed Dy F(A,u) ¢ ImQ.

Since we showed that dim KerQ = 1 and Dy\F()\u) ¢ ImQ, we can prove our claim in the
same way as in the proof of Lemma 8.1. o

Step 2. We prepare several inequalities which we use later.

By the implicit function theorem, there exist ¢; and a unique map

(uo(Za) = €1, u0(z0) + €1) 3 7 — (A(7), u(7)) € A x W2
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such that (A, uo) = (M(70), u(Y0)) With vo.:= ug(Zo), u(¥)(zo) = ¥, and F(A(7),u(v)) = 0.

As in Step 2 of the proof of Theorem 7.3, we easily obtain the following inequalities.
(8.7) () = A+ 1Tau(y®) - Tau(ilgy € Cisby™ =l Vv € I,

where I) := [ug(zo) — %, uo(zo) + %]

Let ag(z) := ay(Ao, z,uh(z)). Again, we can assume without loss of generality that
ay("\()v zvué(z)) 2 360 > 0.

Then, we define the canonical projection IIj : H} — .g';,, the isomorphism Ty € L(H ™!, H}),
and the C? map fﬁ A X W01’°° — W1 as in Step 2 of the proof of Theorem 7.3. Of course,
we have (7.11) and (7.12).

Now, define -17?, RxS —=Rx W-1L> by

(8.8) ol M u) = (u(z0) - v, Fa(M\ w), v€R,(Mu)€S.
As in Step 2 of the proof of Theorem 7.3, we observe

WE (7, M), Tau())llmxz-1 = |Tau()(zo0) = A + IFR (A7), Tnu(3))] -1

< Cih, Vv€ .
Thus, we conclude that, for any n with 0 < 5 < %,
. - l =
(8.9) lim sup {h=G*|[H}(7, M), Tau(M)llmxn-1} = 0. o
—0y¢l,

Step 3. We claim that there exist a positive ¢; > 0 and a constant C,7 independent of

h > 0 and v € [uo(zo) — €2, ug(z0) + €3] such that
(8.10)  11Da, ) Ha (% M), au()) (s, va)llmsesg-1 > Cur(lasl + llonllgy),  Vis € RVoy € Sh.
First, we remark that, by (8.6) and Step 1, the mapping
(uo(z0) = €1,u0(20) + €1) 3 ¥ — (Dor ) H (7, M), (1))~ € LR x H™',R x H})

is continuous. Thus, we set

w = gneal)lt]l(D(x,..)H(“/. M), 8N o=t mxard)-
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Next, we write

(8.11) D(x,.nﬁ?.(% A, au(¥))(, va) = (vn(zo), DF(MT), u(7)) (&, vn))

+(0,(DFR(A(), Tau(n) = DF(A), u(1)) 1, v4)).
On the first term of right-hand side of (8.11), we have
(8.12) [I(un(20); DE(A(Y), w(1))(, vnDllmcr=r 2 w™ (il + llwmll)-

On the second term of right-side of (8.11), we write

(8.13)  (DFu(A(¥), flau()) = DF(A(Y), (7)) (1, vn)
= —u(I = P)DrAF(A(7), u(7))

+uPY(DyF(A(7), Tau(7)) = DAF(A(Y), u(+))"”

(a)

+P2(D F(M(7), Tau(7)) = DuF(A(Y), u(7)))vy
—(I = P)(=T5" + DyF (Mo, uo))v,

+(I = P2Y(DyF(o,u0) = Du FOM), w(v))vs .
Let us check each term of (8.13). On (a), we have
(8.14a) (I = POYDAF(A(Y), w(N))lz-1 < e(h)lul,

with 'l.m}) e(h) = 0 because ||(I — P?)Dy F(M(7), u(7))||g-1 — 0 as h — O uniformly with respect

to v on I; = [ug(zo) — %,uo(zo) + -?-]
On (b), we easily obtain

(8.14b) lluP2(DAF(A(), fixu(1)) = DyF(M7), (M)l < Crsh' ™7 ul.
On (c) and (d), we immediately get (see Step 3 of the proof of Theorem 7.3)

(8.14c) IPR(Du F(M7), Tau(y) = DuF(M7), u()))uallg-1 < sthl-;‘:”UhHH;»
(8.14d) P_[%H(I - PY(-T5' + Dy F(Ao,uo)llgeay -1y = O

On (e), by (8.6), there exists a constant Cy such that
1Dy F(A(7), (7)) = DuF(A(Y"), (YWl geag, -1y € Caoly = 771

for any v,v* € I;. Take €2 > 0 so that 5! > 2wCqosup||I — P'?HC(H—I‘H—I). Then, we have
h>0

w—l

(8.14e) (I = Pa)(Dy F(Xo,u0) = Dy F(A(Y), w(¥)l -1 -1y € 5
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for any v € [uo(Zo) — €2, u0(Za) + €2]-
From (8.12) and (8.14), we obtain

_ -1
WD, a1, A, Tau(9)) (ks vn)llmig =1 2 (9_2_ = §(R))(Lul + llvnllgy),

with }mb 8(h) = 0. Therefore, we prove the claim (8.10) for sufficiently small A > 0. ¢

Step 4. Again, we prepare a few inequalities. By (8.8), we see

—0 -~
(8.15) D1 H p (v, A(Y), Tpu(Y))llmx -+ = (-1, 0)llmx -1 = 1.
Also, we immediately obtain

(8.16)  |IDH (", A", u") = DH (1, A(7), (1))l ca? x Hi Rx H 1)

< Ca(Ir" = A+ A" = 2|+ [lw” = Tnu(3)llyyr.=).

where C21 = C21(|7°|, |A°], |A|,||u‘||W;.«).
Thus, by the inverse inequality (7.5) and (8.16), there exists a monotonically increasing
function L; : RY¥ — R™ independent of h such that, for all v,v" € [ug(z0) — 52‘- uo(zo) + %-],

A" € A and v} € S, with

- L] - - i1 1
A= (y" = 91+ A = A+ llvi - Bau(llgg) €& 0<n< s,

we have

(817) [IDHR(7", A%, u") = DHA(7, A(7), Ta (1)l comex iy mxc-)

< LR E(|y" = 91 + A = A + [l = Tau()lly). o

Step 5. By (8.7), (8.9), (8.10), (8.15) and (8.17), we can apply Theorem 7.2 to the operator

F?, in the following situation;

X = R with norm A™X|y|,

Y =R x Sy CRx Hg with norm A™X(|A[ + ||vall ),

Z =R x Sp C R x B! with norm A=X(|A| + |IT5 vall 1),

S = [uo(zo) — €0, uo(z0) + €0} With ¢ := min(%,eg),

¥(7) = (A7), Mau(v)),
where x := %+nfor any 7,0< 0 < %
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. (] L]
Since ”Ah”[,(X xY.2) = ”Ah”[_’,(.?x[{; RXH-1) for all A, € C(R2 X Sh,R X Sh) and (8.9), there
exist a constant b( Ao, ug) > 0, independent of h, and a unique C? function [uo(zo) — €0, uo(Zo) +

€] 3 7~ (An(7), 3(7)) € R x S such that

(8.18)  Ha(v, Aa(7),@n(1) = (0,0), (M), Tau(1)) = Ga(m), @1l < 8o, uo),

and the inequality

(8.19)  Aa(m) = A + llaa () = Bau(Mllgy < CollFa(v A7), Tnu(n)llmuss-1-
It is clear that (8.18) implies (8.3) and (8.4). To get (8.5), we observe that

(8.20) I n(% A7), Tau()llmxg-r = [PAF(AD), u(v)) = FOAG), Tau(v)llg-

Callu(vy) - ﬁhu(“r)llu,;-

IA

Therefore, combining (8.19) and (8.20), we obtain (8.5) and complete the proof. O

By the same way as in Section 7, we obtain the following propositions.

Corollary 8.5. Suppose that the assumptions of Theorem 8.4 hold. Then, there exists a

constant K;(Ag,ug) > O independent of h > 0 and v € [ug(zq) — €0, uo(zo) + €o] such that
IA(Y) = A(V)] + [lu() - U(Nllwp= < K1(Ro, uo)h",

t’orany0<n<%and~/.cl

Theorem 8.8. Suppose that Assuraption 7.1 holds ford > 2. Let Mo C M, be a connected
compact subset with the foliowing properties:

(1) DyF(),u) # 0 for any (A, u) € Mo.

(2) There exist zo € J such that D, 4)H(v, ), u) defined by (8.2) is an isomorphism for all

(2, u) € Mo.

Then M, is parametrized by v = u(zg). We assume without loss of generalisy that the
above zg is a nodal point of .;';. for all sufficiently small h > 0.

Then the:ze exists the corresponding finite element solution branch :\71;. C My which is

parametrized by the same v, that is, up(7)(zo) = v and Fy(An(7), ua(v)) =0 for any ~.
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Moreover, we have

() = A0 + NTnu(r) = wn(Nll gy < Kah¥*,
M) = A+ Hu(r) = un(Dllgy < Kallu(r) = Tau(llgg,
M) = A+ llu(r) = un(Nllyr.e < Kb,

/‘\:ih C R(Fv S),

for all ¥ = u(zo), (A(7),u(7)) € Mo,(M(7),un(7)) € My, and 7 with 0 < 1 < §. Here,

K3, K3, Ky are positive constants independent of h and v. O
For the W."?"-norm estimate, we have the following theorem as in Section 7.

Theorem 8.7. Suppose that the assumptions of Theorem 8.6 and (7.27) hold. Then, for

the corresponding finite element solution branch we have the following estimates.

A = WD + 1Tau(r) = un(Mll e < KshFT,
(1) = N+ llu(n) = wn(Dllyr.e < Kellu(y) - ﬁw(*r)llwg.p-,

[A(Y) = AN + llu() = un(9yp.e0 < K7h7,

for all ¥ = u(zg),(A(7), u(7)) € Mo, (M(7),un(7)) € My, and n with0 < n < 1 - pl—.. Here,

K, K¢, K7 are positive constants independent of h and v. O
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